您现在的位置是:网站首页> 编程资料编程资料

HTML5录音实践总结(Preact)HTML5网页录音和上传到服务器支持PC、Android,支持IOS微信功能html5录音功能实战示例详解HTML5 录音的踩坑之旅

2023-10-11 244人已围观

简介 这篇文章主要介绍了HTML5录音实践总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

获取 PCM 数据

处理 PCM 数据

Float32Int16

ArrayBufferBase64

PCM 文件播放

重采样

PCMMP3

PCMWAV

短时能量计算

Web Worker优化性能

音频存储(IndexedDB)

WebView 开启 WebRTC

获取 PCM 数据

查看 DEMO

https://github.com/deepkolos/pc-pcm-wave

样例代码:

 const mediaStream = await window.navigator.mediaDevices.getUserMedia({ audio: { // sampleRate: 44100, // 采样率 不生效需要手动重采样 channelCount: 1, // 声道 // echoCancellation: true, // noiseSuppression: true, // 降噪 实测效果不错 }, }) const audioContext = new window.AudioContext() const inputSampleRate = audioContext.sampleRate const mediaNode = audioContext.createMediaStreamSource(mediaStream) if (!audioContext.createScriptProcessor) { audioContext.createScriptProcessor = audioContext.createJavaScriptNode } // 创建一个jsNode const jsNode = audioContext.createScriptProcessor(4096, 1, 1) jsNode.connect(audioContext.destination) jsNode.onaudioprocess = (e) => { // e.inputBuffer.getChannelData(0) (left) // 双通道通过e.inputBuffer.getChannelData(1)获取 (right) } mediaNode.connect(jsNode)

简要流程如下:

 start=>start: 开始 getUserMedia=>operation: 获取MediaStream audioContext=>operation: 创建AudioContext scriptNode=>operation: 创建scriptNode并关联AudioContext onaudioprocess=>operation: 设置onaudioprocess并处理数据 end=>end: 结束 start->getUserMedia->audioContext->scriptNode->onaudioprocess->end

停止录制只需要把 audioContext 挂在的 node 卸载即可,然后把存储的每一帧数据合并即可产出 PCM 数据

 jsNode.disconnect() mediaNode.disconnect() jsNode.onaudioprocess = null

PCM 数据处理

通过 WebRTC 获取的 PCM 数据格式是 Float32 的, 如果是双通道录音的话, 还需要增加合并通道

 const leftDataList = []; const rightDataList = []; function onAudioProcess(event) { // 一帧的音频PCM数据 let audioBuffer = event.inputBuffer; leftDataList.push(audioBuffer.getChannelData(0).slice(0)); rightDataList.push(audioBuffer.getChannelData(1).slice(0)); } // 交叉合并左右声道的数据 function interleaveLeftAndRight(left, right) { let totalLength = left.length + right.length; let data = new Float32Array(totalLength); for (let i = 0; i < left.length; i++) { let k = i * 2; data[k] = left[i]; data[k + 1] = right[i]; } return data; }

Float32 转 Int16

 const float32 = new Float32Array(1) const int16 = Int16Array.from( float32.map(x => (x > 0 ? x * 0x7fff : x * 0x8000)), )

arrayBuffer 转 Base64

注意: 在浏览器上有个 btoa() 函数也是可以转换为 Base64 但是输入参数必须为字符串, 如果传递 buffer 参数会先被 toString() 然后再 Base64 , 使用 ffplay 播放反序列化的 Base64 , 会比较刺耳

使用 base64-arraybuffer 即可完成

 import { encode } from 'base64-arraybuffer' const float32 = new Float32Array(1) const int16 = Int16Array.from( float32.map(x => (x > 0 ? x * 0x7fff : x * 0x8000)), ) console.log(encode(int16.buffer))

验证 Base64 是否正确, 可以在 node 下把产出的 Base64 转换为 Int16 的 PCM 文件, 然后使用 FFPlay 播放, 看看音频是否正常播放

PCM 文件播放

 # 单通道 采样率:16000 Int16 ffplay -f s16le -ar 16k -ac 1 test.pcm # 双通道 采样率:48000 Float32 ffplay -f f32le -ar 48000 -ac 2 test.pcm

重采样/调整采样率

虽然 getUserMedia 参数可设置采样率, 但是在最新Chrome也不生效, 所以需要手动做个重采样

 const mediaStream = await window.navigator.mediaDevices.getUserMedia({ audio: { // sampleRate: 44100, // 采样率 设置不生效 channelCount: 1, // 声道 // echoCancellation: true, // 减低回音 // noiseSuppression: true, // 降噪, 实测效果不错 }, })

使用 wave-resampler 即可完成

 import { resample } from 'wave-resampler' const inputSampleRate = 44100 const outputSampleRate = 16000 const resampledBuffers = resample( // 需要onAudioProcess每一帧的buffer合并后的数组 mergeArray(audioBuffers), inputSampleRate, outputSampleRate, )

PCM 转 MP3

 import { Mp3Encoder } from 'lamejs' let mp3buf const mp3Data = [] const sampleBlockSize = 576 * 10 // 工作缓存区, 576的倍数 const mp3Encoder = new Mp3Encoder(1, outputSampleRate, kbps) const samples = float32ToInt16( audioBuffers, inputSampleRate, outputSampleRate, ) let remaining = samples.length for (let i = 0; remaining >= 0; i += sampleBlockSize) { const left = samples.subarray(i, i + sampleBlockSize) mp3buf = mp3Encoder.encodeBuffer(left) mp3Data.push(new Int8Array(mp3buf)) remaining -= sampleBlockSize } mp3Data.push(new Int8Array(mp3Encoder.flush())) console.log(mp3Data) // 工具函数 function float32ToInt16(audioBuffers, inputSampleRate, outputSampleRate) { const float32 = resample( // 需要onAudioProcess每一帧的buffer合并后的数组 mergeArray(audioBuffers), inputSampleRate, outputSampleRate, ) const int16 = Int16Array.from( float32.map(x => (x > 0 ? x * 0x7fff : x * 0x8000)), ) return int16 }

使用 lamejs 即可, 但是体积较大(160+KB), 如果没有存储需求可使用 WAV 格式

 > ls -alh -rwxrwxrwx 1 root root 95K 4月 22 12:45 12s.mp3* -rwxrwxrwx 1 root root 1.1M 4月 22 12:44 12s.wav* -rwxrwxrwx 1 root root 235K 4月 22 12:41 30s.mp3* -rwxrwxrwx 1 root root 2.6M 4月 22 12:40 30s.wav* -rwxrwxrwx 1 root root 63K 4月 22 12:49 8s.mp3* -rwxrwxrwx 1 root root 689K 4月 22 12:48 8s.wav*

PCM 转 WAV

 function mergeArray(list) { const length = list.length * list[0].length const data = new Float32Array(length) let offset = 0 for (let i = 0; i < list.length; i++) { data.set(list[i], offset) offset += list[i].length } return data } function writeUTFBytes(view, offset, string) { var lng = string.length for (let i = 0; i < lng; i++) { view.setUint8(offset + i, string.charCodeAt(i)) } } function createWavBuffer(audioData, sampleRate = 44100, channels = 1) { const WAV_HEAD_SIZE = 44 const buffer = new ArrayBuffer(audioData.length * 2 + WAV_HEAD_SIZE) // 需要用一个view来操控buffer const view = new DataView(buffer) // 写入wav头部信息 // RIFF chunk descriptor/identifier writeUTFBytes(view, 0, 'RIFF') // RIFF chunk length view.setUint32(4, 44 + audioData.length * 2, true) // RIFF type writeUTFBytes(view, 8, 'WAVE') // format chunk identifier // FMT sub-chunk writeUTFBytes(view, 12, 'fmt') // format chunk length view.setUint32(16, 16, true) // sample format (raw) view.setUint16(20, 1, true) // stereo (2 channels) view.setUint16(22, channels, true) // sample rate view.setUint32(24, sampleRate, true) // byte rate (sample rate * block align) view.setUint32(28, sampleRate * 2, true) // block align (channel count * bytes per sample) view.setUint16(32, channels * 2, true) // bits per sample view.setUint16(34, 16, true) // data sub-chunk // data chunk identifier writeUTFBytes(view, 36, 'data') // data chunk length view.setUint32(40, audioData.length * 2, true) // 写入PCM数据 let index = 44 const volume = 1 const { length } = audioData for (let i = 0; i < length; i++) { view.setInt16(index, audioData[i] * (0x7fff * volume), true) index += 2 } return buffer } // 需要onAudioProcess每一帧的buffer合并后的数组 createWavBuffer(mergeArray(audioBuffers))

WAV 基本上是 PCM 加上一些音频信息

简单的短时能量计算

 function shortTimeEnergy(audioData) { let sum = 0 const energy = [] const { length } = audioData for (let i = 0; i < length; i++) { sum += audioData[i] ** 2 if ((i + 1) % 256 === 0) { energy.push(sum) sum = 0 } else if (i === length - 1) { energy.push(sum) } } return energy }

由于计算结果有会因设备的录音增益差异较大, 计算出数据也较大, 所以使用比值简单区分人声和噪音

查看 DEMO

 const NoiseVoiceWatershedWave = 2.3 const energy = shortTimeEnergy(e.inputBuffer.getChannelData(0).slice(0)) const avg = energy.reduce((a, b) => a + b) / energy.length const nextState = Math.max(...energy) / avg > NoiseVoiceWatershedWave ? 'voice' : 'noise'

Web Worker 优化性能

音频数据数据量较大, 所以可以使用 Web Worker 进行优化, 不卡 UI 线程

在 Webpack 项目里 Web Worker 比较简单, 安装 worker-loader 即可

preact.config.js

 export default (config, env, helpers) => { config.module.rules.push({ test: /\.worker\.js$/, use: { loader: 'worker-loader', options: { inline: true } }, }) }

recorder.worker.js

 self.addEventListener('message', event => { console.log(event.data) // 转MP3/转Base64/转WAV等等 const output = '' self.postMessage(output) }

使用 Worker

 async function toMP3(audioBuffers, inputSampleRate, outputSampleRate = 16000) { const { default: Worker } = await import('./recorder.worker') const worker = new Worker() // 简单使用, 项目可以在recorder实例化的时候创建worker实例, 有并法需求可多个实例 return new Promise(resolve => { worker.postMessage({ audioBuffers: audioBuffers, inputSampleRate: inputSampleRate, outputSampleRate: outputSampleRate, type: 'mp3', }) worker.onmessage = event => resolve(event.data) }) }

音频的存储

浏览器持久化储存的地方有 L

-六神源码网